Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Thromb Haemost ; 22(5): 1433-1446, 2024 May.
Article in English | MEDLINE | ID: mdl-38331196

ABSTRACT

BACKGROUND: Cardiovascular implantable devices, such as vascular stents, are critical for the treatment of cardiovascular diseases. However, their success is dependent on robust and often long-term antithrombotic therapies. Yet, the current standard-of-care therapies often pose significant bleeding risks to patients. Coagulation factor (F)XI and FXII have emerged as potentially safe and efficacious targets to safely reduce pathologic thrombin generation in medical devices. OBJECTIVES: To study the efficacy of monoclonal antibody-targeting FXII and FXI of the contact pathway in preventing vascular device-related thrombosis. METHODS: The effects of inhibition of FXII and FXI using function-blocking monoclonal antibodies were examined in a nonhuman primate model of nitinol stent-related thrombosis under arterial and venous flow conditions. RESULTS: We found that function-blocking antibodies of FXII and FXI reduced markers of stent-induced thrombosis in vitro and ex vivo. However, FXI inhibition resulted in more effective mitigation of thrombosis markers under varied flow conditions. CONCLUSION: This work provides further support for the translation of contact pathway of coagulation inhibitors for their adjunctive clinical use with cardiovascular devices.


Subject(s)
Alloys , Antibodies, Monoclonal , Factor XII , Factor XI , Stents , Thrombosis , Animals , Thrombosis/prevention & control , Thrombosis/blood , Factor XII/metabolism , Factor XII/antagonists & inhibitors , Factor XII/immunology , Factor XI/antagonists & inhibitors , Factor XI/immunology , Factor XI/metabolism , Antibodies, Monoclonal/pharmacology , Humans , Blood Coagulation/drug effects , Disease Models, Animal , Male , Regional Blood Flow , Fibrinolytic Agents/pharmacology
2.
Bioact Mater ; 22: 535-550, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36330164

ABSTRACT

Thrombogenesis remains the primary failure of synthetic vascular grafts. Endothelial coverage is crucial to provide an antithrombogenic surface. However, most synthetic materials do not support cell adhesion, and transanastomotic endothelial migration is limited. Here, a surface modification strategy using fucoidan and topography was developed to enable fast in situ endothelialization of polyvinyl alcohol, which is not endothelial cell-adhesive. Among three different immobilization approaches compared, conjugation of aminated-fucoidan promoted endothelial monolayer formation while minimizing thrombogenicity in both in vitro platelet rich plasma testing and ex vivo non-human primate shunt assay. Screening of six topographical patterns showed that 2 µm gratings increased endothelial cell migration without inducing inflammation responses of endothelial cells. Mechanistic studies demonstrated that fucoidan could attract fibronectin, enabling integrin binding and focal adhesion formation and activating focal adhesion kinase (FAK) signaling, and 2 µm gratings further enhanced FAK-mediated cell migration. In a clinically relevant rabbit carotid artery end-to-side anastomosis model, 60% in situ endothelialization was observed throughout the entire lumen of 1.7 mm inner diameter modified grafts, compared to 0% of unmodified graft, and the four-week graft patency also increased. This work presents a promising strategy to stimulate in situ endothelialization on synthetic materials for improving long-term performance.

3.
Front Physiol ; 13: 983187, 2022.
Article in English | MEDLINE | ID: mdl-36200053

ABSTRACT

Small-diameter synthetic vascular grafts that have improved hemocompatibility and patency remain an unmet clinical need due to thrombosis. A surface modification that has potential to attenuate these failure mechanisms while promoting an endothelial layer is the micropatterning of luminal surfaces. Anisotropic features have been shown to downregulate smooth muscle cell proliferation, direct endothelial migration, and attenuate platelet adhesion and activation. However, the effect of micropatterning feature size and orientation relative to whole blood flow has yet to be investigated within a systematic study. In this work, hemocompatibility of micropattern grating sizes of 2, 5, and 10 µm were investigated. The thrombogenicity of the micropattern surface modifications were characterized by quantifying FXIIa activity, fibrin formation, and static platelet adhesion in vitro. Additionally, dynamic platelet attachment and end-point fibrin formation were quantified using an established, flowing whole blood ex vivo non-human primate shunt model without antiplatelet or anticoagulant therapies. We observed a higher trend in platelet attachment and significantly increased fibrin formation for larger features. We then investigated the orientation of 2 µm gratings relative to whole blood flow and found no significant differences between the various orientations for platelet attachment, rate of linear platelet attachment, or end-point fibrin formation. MicroCT analysis of micropatterned grafts was utilized to quantify luminal patency. This work is a significant step in the development of novel synthetic biomaterials with improved understanding of hemocompatibility for use in cardiovascular applications.

4.
Am J Physiol Cell Physiol ; 322(3): C370-C381, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35080922

ABSTRACT

Cannabis usage has steadily increased as acceptance is growing for both medical and recreational reasons. Medical cannabis is administered for treatment of chronic pain based on the premise that the endocannabinoid system signals desensitize pain sensor neurons and produce anti-inflammatory effects. The major psychoactive ingredient of cannabis is Δ9-tetrahydrocannabinol (THC) that signals mainly through cannabinoid receptor-1 (CBr), which is also present on nonneuron cells including blood platelets of the circulatory system. In vitro, CBr-mediated signaling has been shown to acutely inhibit platelet activation downstream of the platelet collagen receptor glycoprotein (GP)VI. The systemic effects of chronic THC administration on platelet activity and function remain unclear. This study investigates the effects of chronic THC administration on platelet function using a nonhuman primate (NHP) model. Our results show that female and male NHPs consuming a daily THC edible had reduced platelet adhesion, aggregation, and granule secretion in response to select platelet agonists. Furthermore, a change in bioactive lipids (oxylipins) was observed in the female cohort after THC administration. These results indicate that chronic THC edible administration desensitized platelet activity and function in response to GPVI- and G-protein coupled receptor-based activation by interfering with primary and secondary feedback signaling pathways. These observations may have important clinical implications for patients who use medical marijuana and for providers caring for these patients.


Subject(s)
Blood Platelets/drug effects , Cannabinoid Receptor Agonists/administration & dosage , Dronabinol/administration & dosage , Medical Marijuana/administration & dosage , Administration, Oral , Animals , Blood Coagulation/drug effects , Blood Platelets/metabolism , Female , Macaca mulatta , Male , Oxylipins/blood , Platelet Adhesiveness/drug effects , Platelet Aggregation/drug effects , Secretory Vesicles/drug effects , Secretory Vesicles/metabolism , Signal Transduction , Thromboxanes/blood , Time Factors
5.
Methods Mol Biol ; 2375: 203-215, 2022.
Article in English | MEDLINE | ID: mdl-34591310

ABSTRACT

Arterial bypass grafts are a standard preclinical model for evaluating physiology and pathophysiology at graft-material interfaces. Implantations of vascular grafts are commonly done as end-to-end grafts in small animal models. Here we detail bilateral end-to-side aortoiliac graft implantation, which requires open surgery and the creation of vascular anastomoses between the graft material and the infrarenal aorta and iliac artery in a nonhuman primate model. In this model, the aortoiliac graft configuration is created using two 4 mm inner diameter vascular grafts (e.g., ePTFE). After exposure and control of the infrarenal aorta and bilateral common iliac arteries and heparinization, the proximal aortic-graft anastomosis is sewn on the lateral wall of the aorta, and subsequently the distal graft-common iliac anastomosis is sewn on the anterior wall of the common iliac artery with one tube graft. Another tube graft is sewn on the contralateral side in the same manner.


Subject(s)
Blood Vessel Prosthesis , Anastomosis, Surgical , Animals , Aorta, Abdominal/surgery , Iliac Artery/surgery
6.
ACS Appl Bio Mater ; 3(1): 693-703, 2020 Jan 21.
Article in English | MEDLINE | ID: mdl-32656504

ABSTRACT

Cardiovascular diseases remain the leading cause of death worldwide. Patency rates of clinically-utilized small diameter synthetic vascular grafts such as Dacron® and expanded polytetrafluoroethylene (ePTFE) to treat cardiovascular disease are inadequate due to lack of endothelialization. Sodium trimetaphosphate (STMP) crosslinked PVA could be potentially employed as blood-compatible small diameter vascular graft for the treatment of cardiovascular disease. However, PVA severely lacks cell adhesion properties, and the efforts to endothelialize STMP-PVA have been insufficient to produce a functioning endothelium. To this end, we developed a one-pot method to conjugate cell-adhesive protein via hydroxyl-to-amine coupling using carbonyldiimidazole by targeting residual hydroxyl groups on crosslinked STMP-PVA hydrogel. Primary human umbilical vascular endothelial cells (HUVECs) demonstrated significantly improved cells adhesion, viability and spreading on modified PVA. Cells formed a confluent endothelial monolayer, and expressed vinculin focal adhesions, cell-cell junction protein zonula occludens 1 (ZO1), and vascular endothelial cadherin (VE-Cadherin). Extensive characterization of the blood-compatibility was performed on modified PVA hydrogel by examining platelet activation, platelet microparticle formation, platelet CD61 and CD62P expression, and thrombin generation, which showed that the modified PVA was blood-compatible. Additionally, grafts were tested under whole, flowing blood without any anticoagulants in a non-human primate, arteriovenous shunt model. No differences were seen in platelet or fibrin accumulation between the modified-PVA, unmodified PVA or clinical, ePTFE controls. This study presents a significant step in the modification of PVA for the development of next generation in situ endothelialized synthetic vascular grafts.

7.
Biomaterials ; 249: 120011, 2020 08.
Article in English | MEDLINE | ID: mdl-32304872

ABSTRACT

The performance of clinical synthetic small diameter vascular grafts remains disappointing due to the fast occlusion caused by thrombosis and intimal hyperplasia formation. Poly(vinyl alcohol) (PVA) hydrogels have tunable mechanical properties and a low thrombogenic surface, which suggests its potential value as a small diameter vascular graft material. However, PVA does not support cell adhesion and thus requires surface modification to encourage endothelialization. This study presents a modification of PVA with fucoidan. Fucoidan is a sulfated polysaccharide with anticoagulant and antithrombotic properties, which was shown to potentially increase endothelial cell adhesion and proliferation. By mixing fucoidan with PVA and co-crosslinked by sodium trimetaphosphate (STMP), the modification was achieved without sacrificing mechanical properties. Endothelial cell adhesion and monolayer function were significantly enhanced by the fucoidan modification. In vitro and ex-vivo studies showed low platelet adhesion and activation and decreased thrombin generation with fucoidan modified PVA. The modification proved to be compatible with gamma sterilization. In vivo evaluation of fucoidan modified PVA grafts in rabbits exhibited increased patency rate, endothelialization, and reduced intimal hyperplasia formation. The fucoidan modification presented here benefited the development of PVA vascular grafts and can be adapted to other blood contacting surfaces.


Subject(s)
Polysaccharides , Polyvinyl Alcohol , Animals , Blood Vessel Prosthesis , Hydrogels , Platelet Adhesiveness , Rabbits
8.
Methods Protoc ; 3(2)2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32295060

ABSTRACT

Hemocompatibility is a critical consideration when designing cardiovascular devices. Methods of assessing hemocompatibility range from in vitro protein adsorption and static platelet attachment to in vivo implantation. A standard preclinical assessment of biomaterial hemocompatibility is ex vivo quantification of thrombosis in a chronic arteriovenous shunt. This technique utilizes flowing blood and quantifies platelet accumulation and fibrin deposition. However, the physical parameters of the thrombus have remained unknown. This study presents the development of a novel method to quantify the 3D physical properties of the thrombus on different biomaterials: expanded polytetrafluoroethylene and a preclinical hydrogel, poly(vinyl alcohol). Tubes of 4-5 mm inner diameter were exposed to non-anticoagulated blood flow for 1 hour and fixed. Due to differences in biomaterial water absorption properties, unique methods, requiring either the thrombus or the lumen to be radiopaque, were developed to quantify average thrombus volume within a graft. The samples were imaged using X-ray microcomputed tomography (microCT). The methodologies were strongly and significantly correlated to caliper-measured graft dimensions (R2 = 0.994, p < 0.0001). The physical characteristics of the thrombi were well correlated to platelet and fibrin deposition. MicroCT scanning and advanced image analyses were successfully applied to quantitatively measure 3D physical parameters of thrombi on cardiovascular biomaterials under flow.

9.
Tissue Eng Part A ; 26(19-20): 1077-1090, 2020 10.
Article in English | MEDLINE | ID: mdl-32264787

ABSTRACT

This study investigated the effects of terminal sterilization of polyvinyl alcohol (PVA) biomaterials using clinically translatable techniques, specifically ethylene oxide (EtO) and gamma (γ) irradiation. While a few studies have reported the possibility of sterilizing PVA with γ-radiation, the use of EtO sterilization of PVA requires additional study. PVA solutions were chemically crosslinked with trisodium trimetaphosphate and sodium hydroxide. The three experimental groups included untreated control, EtO, and γ-irradiation, which were tested for the degree of swelling and water content, and mechanical properties such as radial compliance, longitudinal tensile, minimum bend radius, burst pressure, and suture retention strength. In addition, samples were characterized with scanning electron microscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and water contact angle measurements. Cell attachment was assessed using the endothelial cell line EA.hy926, and the sterilized PVA cytotoxicity was studied with a live/dead stain. Platelet and fibrin accumulation was measured using an ex vivo shunt baboon model. Finally, the immune responses of PVA implants were analyzed after a 21-day subcutaneous implantation in rats and a 30-day implantation in baboon. EtO sterilization reduced the PVA graft wall thickness, its degree of swelling, and water content compared with both γ-irradiated and untreated PVA. Moreover, EtO sterilization significantly reduced the radial compliance and increased Young's modulus. EtO did not change PVA hydrophilicity, while γ-irradiation increased the water contact angle of the PVA. Consequently, endothelial cell attachment on the EtO-sterilized PVA showed similar results to the untreated PVA, while cell attachment significantly improved on the γ-irradiated PVA. When exposing the PVA grafts to circulating whole blood, fibrin accumulation of EtO-sterilized PVA was found to be significantly lower than γ-irradiated PVA. The immune responses of γ-irradiated PVA, EtO-treated PVA, and untreated PVA were compared. Implanted EtO-treated PVA showed the least MAC387 reaction. The terminal sterilization methods in this study changed PVA hydrogel properties; nevertheless, based on the characterizations performed, both sterilization methods were suitable for sterilizing PVA. We concluded that EtO can be used as an alternative method to sterilize PVA hydrogel material. Impact statement Polyvinyl alcohol (PVA) hydrogels have been used for a variety of tissue replacements, including neural, cardiac, meniscal, cartilage, muscle, pancreatic, and ocular applications. In addition, PVA can be made into a tubular shape and used as a small-diameter vascular graft. Ethylene oxide (EtO) is one of the Food and Drug Administration-approved methods for sterilization, but its effect on PVA has not been studied extensively. The outcome of this study provides the effects of EtO and γ-irradiation of PVA grafts on both the material properties and the in vivo responses, particularly for vascular applications. Knowledge of these effects may ultimately improve the success rate of PVA vascular grafts.


Subject(s)
Ethylene Oxide , Hydrogels , Polyvinyl Alcohol , Sterilization , Animals , Ethylene Oxide/pharmacology , Gamma Rays , Papio , Rats
10.
Front Bioeng Biotechnol ; 8: 621768, 2020.
Article in English | MEDLINE | ID: mdl-33425883

ABSTRACT

Poly(vinyl alcohol) hydrogel, PVA, is a suitable material for small-diameter vascular grafting. However, the bioinert properties of the material do not allow for in situ endothelialization, which is needed to combat common graft failure mechanisms, such as intimal hyperplasia and thrombosis. In this work, the surface of planar and tubular PVA was covalently modified with a collagen-mimicking peptide, GFPGER. The surface of modified PVA was characterized by measuring contact angle and x-ray photoelectron spectroscopy. Endothelial cell attachment to GFPGER-modified PVA was quantified and qualitatively examined using immunohistochemical staining. Then, in vitro hemocompatibility testing was performed by quantifying platelet attachment, coagulation factor XII activation, and initiation of fibrin formation. Finally, an established ex vivo, non-human primate model was employed to examine platelet attachment and fibrin formation under non-anticoagulated, whole blood flow conditions. GFPGER-modified PVA supported increased EC attachment. In vitro initiation of fibrin formation on the modified material was significantly delayed. Ex vivo thrombosis assessment showed a reduction in platelet attachment and fibrin formation on GFPGER-modified PVA. Overall, GFPGER-modified PVA encouraged cell attachment while maintaining the material's hemocompatibility. This work is a significant step toward the development and characterization of a modified-hydrogel surface to improve endothelialization while reducing platelet attachment.

11.
Article in English | MEDLINE | ID: mdl-31192200

ABSTRACT

Plasma-based surface modification is recognized as an effective way to activate biomaterial surfaces, and modulate their interactions with cells, extracellular matrix proteins, and other materials. However, treatment of a luminal surface of a tubular scaffold remains non-trivial to perform in small diameter tubes. Polyvinyl alcohol (PVA) hydrogel, which has been widely used for medical applications, lacks functional groups to mediate cell attachment. This poses an issue for vascular applications, as endothelialization in a vascular graft lumen is crucial to maintain long term graft patency. In this study, a Radio Frequency Glow Discharges (RFGD) treatment in the presence of NH3 was used to modify the luminal surface of 3-mm diameter dehydrated PVA vascular grafts. The grafted nitrogen containing functional groups demonstrated stability, and in vitro endothelialization was successfully maintained for at least 30 days. The plasma-modified PVA displayed a higher percentage of carbonyl groups over the untreated PVA control. Plasma treatment on PVA patterned with microtopographies was also studied, with only the concave microlenses topography demonstrating a significant increase in platelet adhesion. Thus, the study has shown the possibility of modifying a small diameter hydrogel tubular scaffold with the RFGD plasma treatment technique and demonstrated stability in ambient storage conditions for up to 30 days.

12.
Acta Biomater ; 86: 291-299, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30639349

ABSTRACT

Poly(vinyl alcohol) (PVA) has shown promise as a biomaterial for cardiovascular application. However, its antifouling properties prevent in vivo endothelialization. This work examined the endothelialization and thrombogenicity of modified PVA with different concentrations of proteins and adhesion peptides: collagen, laminin, fibronectin, GFPGER, YIGSR, and cRGD. Material surface properties were quantified, and the endothelialization potential was determined with human endothelial colony forming cells. Additionally, platelet attachment was assessed in vitro with human platelet rich plasma, and promising samples were tested in an ex vivo shunt model. This well-established arteriovenous shunt model was used with and without clinically-relevant antiplatelet therapies, specifically acetylsalicylic acid (ASA) with and without clopidogrel to examine the minimum necessary treatment to prevent thrombosis. Collagen, laminin, and GFPGER biomolecules increased endothelialization, with GFPGER showing the greatest effect at the lowest concentrations. GFPGER-PVA tubes tested under whole blood did exhibit an increase in platelet (but not fibrin) attachment compared to plain PVA and clinical controls. However, application of ASA monotherapy reduced the thrombogenicity of GFPGER-PVA below the clinical control with the ASA. This work is significant in developing cardiovascular biomaterials-increasing endothelialization potential while reducing bleeding side effects by using an antiplatelet monotherapy, typical of clinical patients. STATEMENT OF SIGNIFICANCE: We modified the endothelialization potential of synthetic, hydrogel vascular grafts with proteins and peptides of the vascular tissue matrix. Cell attachment was dramatically increased with the GFPGER peptide, and while some additional platelet attachment was seen under flow with whole blood, this was completely knocked down using clinical antiplatelet monotherapy. This indicates that long-term patency of this biomaterial could be improved without the associated bleeding risk of multiple platelet therapies.


Subject(s)
Biomimetic Materials/chemistry , Blood Platelets/pathology , Endothelium/pathology , Polyvinyl Alcohol/chemistry , Thrombosis/prevention & control , Colony-Forming Units Assay , Fibrin/metabolism , Humans , Hydrophobic and Hydrophilic Interactions
13.
Macromol Biosci ; 18(11): e1800132, 2018 11.
Article in English | MEDLINE | ID: mdl-30256533

ABSTRACT

Bulk material properties and luminal surface interaction with blood determine the clinical viability of vascular grafts, and reducing intimal hyperplasia is necessary to improve their long-term patency. Here, the authors report that the surface of a biocompatible hydrogel material, poly(vinyl alcohol) (PVA) can be altered by exposing it to reactive ion plasma (RIP) in order to increase primary endothelial cell attachment. The power and the carrier gas of the RIP treatment are varied and the resultant surface nitrogen, water contact angle, as well as the ability of the RIP-treated surfaces to support primary endothelial colony forming cells is characterized. Additionally, in a clinically relevant shunt model, the amounts of platelet and fibrin attachment to the surface were quantified during exposure to non-anticoagulated blood. Treatments with all carrier gases resulted in an increase in the surface nitrogen. Treating PVA with O2 , N2 , and Ar RIP increased affinity to primary endothelial colony forming cells. The RIP treatments did not increase the thrombogenicity compared to untreated PVA and had significantly less platelet and fibrin attachment compared to the current clinical standard of expanded polytetrafluoroethylene (ePTFE). These findings indicate that RIP-treatment of PVA could lead to increased patency in synthetic vascular grafts.


Subject(s)
Blood Platelets/metabolism , Endothelial Cells/metabolism , Plasma Gases/chemistry , Platelet Adhesiveness , Polyvinyl Alcohol , Thrombosis , Animals , Blood Platelets/pathology , Cells, Cultured , Endothelial Cells/pathology , Papio anubis , Polyvinyl Alcohol/chemistry , Polyvinyl Alcohol/pharmacology
14.
Tissue Eng Part C Methods ; 24(8): 457-464, 2018 08.
Article in English | MEDLINE | ID: mdl-29984616

ABSTRACT

While clinical vascular grafting uses an end-to-side surgical method, researchers primarily use end-to-end implant techniques in preclinical models. This may be due in part to the limitations of using small animal models in research. The work presented here provides support and evidence for the improvement of vascular graft implant techniques by demonstrating the successful implantation of experimental grafts into both large and small animal models. Specifically, models of aortoiliac baboon (Papio anubis) bypass and common carotid rabbit (Oryctolagus cuniculus) bypass were used to test vascular grafts for thrombosis and vascular healing after 1 month using an end-to-side anastomosis grafting procedure. Patency was evaluated with ultrasound or histological techniques, and neointimal growth was quantified with histology. In the development of this procedure for small animals, both an end-to-end/end-to-side and an end-to-side/end-to-side configuration were tested in rabbits. One hundred percent of rabbit implants (2/2) with an end-to-end/end-to-side configuration were patent at explant. However, with the end-to-side/end-to-side configuration, 66% (6/9) of rabbit implants and 93% (13/14) of baboon implants remained patent at 1 month, suggesting the importance of replicating the end-to-side method for testing vascular grafts for clinical use. This study describes feasible preclinical surgical procedures, which simulate clinical vascular bypass grafts even in small animals. Widespread implementation of these end-to-side surgical techniques in these or other animals should improve the quality of experimental, preclinical testing and ultimately increase the likelihood of translating new vascular graft technologies into clinical applications.


Subject(s)
Vascular Grafting/methods , Animals , Implants, Experimental , Male , Models, Animal , Papio , Rabbits , Ultrasonography, Doppler
15.
J Biomed Mater Res B Appl Biomater ; 104(8): 1610-1621, 2016 11.
Article in English | MEDLINE | ID: mdl-26316151

ABSTRACT

Chronic deep venous insufficiency is a debilitating disease with limited therapeutic interventions. A bioprosthetic venous valve could not only replace a diseased valve, but has the potential to fully integrate into the patient with a minimally invasive procedure. Previous work with valves constructed from small intestinal submucosa (SIS) showed improvements in patients' symptoms in clinical studies; however, substantial thickening of the implanted valve leaflets also occurred. As endothelial cells are key regulators of vascular homeostasis, their presence on the SIS valves may reduce the observed thickening. This work tested an off-the-shelf approach to capture circulating endothelial cells in vivo using biotinylated antikinase insert domain receptor antibodies in a suspended leaflet ovine model. The antibodies on SIS were oriented to promote cell capture and showed positive binding to endothelial cells in vitro; however, no differences were observed in leaflet thickness in vivo between antibody-modified and unmodified SIS. In an alternative approach, valves were pre-seeded with autologous endothelial cells and tested in vivo. Nearly all the implanted pre-seeded valves were patent and functioning; however, no statistical difference was observed in valve thickness with cell pre-seeding. Additional cell capture schemes or surface modifications should be examined to find an optimal method for encouraging SIS valve endothelialization to improve long-term valve function in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1610-1621, 2016.


Subject(s)
Bioprosthesis , Endothelium, Vascular/metabolism , Venous Insufficiency/metabolism , Venous Insufficiency/surgery , Venous Valves , Animals , Chronic Disease , Endothelium, Vascular/pathology , Female , Sheep , Venous Insufficiency/pathology
16.
Acta Biomater ; 25: 97-108, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26225735

ABSTRACT

Synthetic small diameter vascular grafts with mechanical properties of native arteries, resistance to thrombosis and capacity to stimulate in situ endothelialization are an unmet clinical need. Poly(vinyl alcohol) hydrogel (PVA) is an excellent candidate as a vascular graft due to its tunable mechanical properties. However, the hydrophilicity and bio-inertness of PVA prevents endothelialization in vivo. We hypothesize that the modification of PVA with biomolecules and topographies creates a hemocompatible environment that also enhances bioactivity. PVA modified with fibronectin, RGDS peptide, cyclicRGD (cRGD) peptide, or heparin provided cell-adhesion motifs, which were confirmed by detection of nitrogen through X-ray photoelectron spectroscopy. Protein- and peptide-modified surfaces showed a slight increase in human vascular endothelial cell proliferation over unmodified PVA. With the exception of fibronectin modification, modified surfaces showed in vitro hemocompatibility comparable with unmodified PVA. To further improve bioactivity, cRGD-PVA was combined with gratings and microlens topographies. Combined modifications of 2 µm gratings or convex topography and cRGD significantly improved human vascular endothelial cell viability on PVA. In vitro hemocompatibility testing showed that topography on cRGD-PVA did not significantly trigger an increase of platelet adhesion or activation compared with unpatterned PVA. Using the more physiologically relevant ex vivo hemocompatibility testing, all PVA grafts tested showed similar platelet adhesion to ePTFE and significantly lower platelet accumulation compared to collagen-coated ePTFE grafts. The biochemical and topographical modification of PVA demonstrates excellent hemocompatibility with enhanced bioactivity of PVA, thus highlighting its potential as a vascular graft. STATEMENT OF SIGNIFICANCE: New synthetic small diameter vascular grafts with mechanical properties, blood-clot resistance and endothelial lining mimicking native arteries remains an unresolved critical clinical need. We aim to achieve this by modifying the mechanically-tunable poly(vinyl alcohol) hydrogel (PVA) vascular graft with both biochemical and biophysical cues in the lumenal surface. PVA modified with cyclic RGD peptide and ordered micrometer-sized topography showed low platelet adhesion in both a rabbit in vitro and baboon ex vivo blood compatibility assay. Modified PVA also exhibited significant enhancement of human vascular endothelial cell viability and proliferation in vitro. The readily available, modified PVA grafts are the first to show biophysical and biochemical modification in a three-dimensional scaffold with hemocompatibility, biofunctionality and excellent potential for clinical application.


Subject(s)
Blood Vessel Prosthesis , Materials Testing/methods , Polyvinyl Alcohol/pharmacology , Animals , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Fibrin/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Papio , Peptides, Cyclic/pharmacology , Platelet Adhesiveness , Rabbits , Surface Properties , Water/chemistry
17.
PLoS One ; 9(12): e115163, 2014.
Article in English | MEDLINE | ID: mdl-25526637

ABSTRACT

After many years of research, small diameter, synthetic vascular grafts still lack the necessary biologic integration to perform ideally in clinical settings. Endothelialization of vascular grafts has the potential to improve synthetic graft function, and endothelial outgrowth cells (EOCs) are a promising autologous cell source. Yet no work has established the link between endothelial cell functions and outcomes of implanted endothelialized grafts. This work utilized steady flow, oscillatory flow, and tumor necrosis factor stimulation to alter EOC phenotype and enable the formulation of a model to predict endothelialized graft performance. To accomplish this, EOC in vitro expression of coagulation and inflammatory markers was quantified. In parallel, in non-human primate (baboon) models, the platelet and fibrinogen accumulation on endothelialized grafts were quantified in an ex vivo shunt, or the tissue ingrowth on implanted grafts were characterized after 1mth. Oscillatory flow stimulation of EOCs increased in vitro coagulation markers and ex vivo platelet accumulation. Steady flow preconditioning did not affect platelet accumulation or intimal hyperplasia relative to static samples. To determine whether in vitro markers predict implant performance, a linear regression model of the in vitro data was fit to platelet accumulation data-correlating the markers with the thromboprotective performance of the EOCs. The model was tested against implant intimal hyperplasia data and found to correlate strongly with the parallel in vitro analyses. This research defines the effects of flow preconditioning on EOC regulation of coagulation in clinical vascular grafts through parallel in vitro, ex vivo, and in vivo analyses, and contributes to the translatability of in vitro tests to in vivo clinical graft performance.


Subject(s)
Biomarkers/metabolism , Blood Coagulation , Blood Vessel Prosthesis , Endothelial Cells/cytology , Hyperplasia/therapy , Tissue Engineering/methods , Tunica Intima/pathology , Animals , Arteriovenous Shunt, Surgical , Blood Platelets/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Fibrinogen/metabolism , Humans , Inflammation/metabolism , Inflammation/pathology , Models, Animal , Papio , Tumor Necrosis Factors/pharmacology
18.
Cells Tissues Organs ; 199(4): 238-48, 2014.
Article in English | MEDLINE | ID: mdl-25612682

ABSTRACT

There is significant clinical need for viable small-diameter vascular grafts. While there are many graft biomaterials in development, few have been clinically successful. Evaluation of grafts with a clinically relevant model is needed to drive development. This work examined extracellular matrix coatings on the thrombotic phenotype of endothelial outgrowth cells (EOCs). EOCs were tested on flat plates and tubular grafts. Flat plate studies examined collagen I, collagen IV, fibronectin and α-elastin coatings. EOCs attached or proliferated more readily on collagen I and fibronectin surfaces as determined by total DNA. The production of activated protein C (APC) by EOCs was also dependent on the surface coating, with collagen I and fibronectin displaying a higher activity than both collagen IV and α-elastin on flat plate studies. Based on these results, only collagen I and fibronectin coatings were tested on expanded polytetrafluoroethylene (ePTFE) in the ex vivo model. Tubular samples showed significantly greater tissue factor pathway inhibitor gene expression on collagen I than on fibronectin. Platelet adhesion was not significantly different, but EOCs on collagen I produced significantly lower APC than on fibronectin, suggesting that differences exist between the flat plate and tubular cultures. Overall, while the hemostatic phenotype of EOCs displayed some differences, cell responses were largely independent of the matrix coating. EOCs adhered strongly to both fibronectin- and collagen-I-coated ePTFE grafts under ex vivo (100 ml/min) flow conditions suggesting the usefulness of this clinically relevant cell source, testing modality, and shunt model for future work examining biomaterials and cell conditioning before implantation.


Subject(s)
Blood Vessel Prosthesis/standards , Endothelial Cells/drug effects , Extracellular Matrix/drug effects , Tissue Engineering/methods , Humans , Thrombosis
19.
Biochem Biophys Res Commun ; 427(1): 159-64, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22995321

ABSTRACT

Production and maintenance of extracellular matrix (ECM) is an essential aspect of endothelial cell (EC) function. ECM surfaces composed of collagen type IV and laminin support an atheroprotective endothelium, while fibronectin may encourage an atheroprone endothelium through inflammation or wound repair signaling. ECs maintain this underlying structure through regulation of protein production and degradation, yet the role of cytoskeletal alignment on this regulation is unknown. To examine the regulation and production of ECM by ECs with an atheroprotective phenotype, ECs were micropatterned onto lanes, which created an elongated EC morphology similar to that seen with unidirectional fluid shear stress application. Collagen IV and fibronectin protein production were measured as were gene expression of collagen IV, fibronectin, laminin, MMP2, MMP9, TIMP1, TIMP2, and TGF-ß1. ECs were also treated with TNF to simulate an injury model. Micropattern-induced elongation led to significant increases in collagen IV and fibronectin protein production, and collagen IV, laminin, and TGF-ß1 gene expression, but no significant changes in the MMP or TIMP genes. TNF treatment significantly increased collagen IV gene and protein production. These results suggest that the increase in ECM synthesis in micropattern-elongated ECs is likely regulated with TGF-ß1, and this increase in ECM could be relevant to the atheroprotection needed for maintenance of a healthy endothelium in vivo.


Subject(s)
Endothelial Cells/cytology , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Animals , Cells, Cultured , Collagen Type IV/biosynthesis , Collagen Type IV/genetics , Endothelial Cells/drug effects , Fibronectins/biosynthesis , Fibronectins/genetics , Gene Expression , Laminin/biosynthesis , Laminin/genetics , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/biosynthesis , Matrix Metalloproteinase 9/genetics , Papio , Protein Biosynthesis , Tissue Inhibitor of Metalloproteinase-1/biosynthesis , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-2/biosynthesis , Tissue Inhibitor of Metalloproteinase-2/genetics , Transforming Growth Factor beta1/biosynthesis , Transforming Growth Factor beta1/genetics , Tumor Necrosis Factor-alpha/pharmacology
20.
Tissue Eng Part A ; 18(1-2): 127-36, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21787250

ABSTRACT

Surface endothelialization is an attractive means to improve the performance of small diameter vascular grafts. While endothelial outgrowth cells (EOCs) are considered a promising source of autologous endothelium, the ability of EOCs to modulate coagulation-related blood activities is not well understood. The goal of this study was to assess the role of arterial flow conditions on the thrombogenic phenotype of EOCs. EOCs derived from baboon peripheral blood, as well as mature arterial endothelial cells from baboons, were seeded onto adsorbed collagen, then exposed to physiologic levels of fluid shear stress. For important hemostatic pathways, cellular responses to shear stress were characterized at the gene and protein level and confirmed with a functional assay for activated protein C (APC) activity. For EOCs, fluid shear stress upregulated gene and protein expression of anticoagulant and platelet inhibitory factors, including thrombomodulin, tissue factor pathway inhibitor, and nitric oxide synthase 3 (eNOS). Fluid shear stress significantly altered the functional activity of EOCs by increasing APC levels. This study demonstrates that fluid shear stress is an important determinant of EOC hemostatic properties. Accordingly, manipulation of EOC phenotype by mechanical forces may be important for the development of thrombo-resistant surfaces on engineered vascular implants.


Subject(s)
Endothelial Cells/cytology , Hemostasis , Rheology , Stress, Mechanical , Animals , Cattle , Cell Proliferation/drug effects , Cell Separation , Cell Shape/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fibronectins/pharmacology , Flow Cytometry , Gene Expression Regulation/drug effects , Hemostasis/drug effects , Male , Papio , Phalloidine/metabolism , Protein C/metabolism , Rheology/drug effects , Rhodamines/metabolism , Thrombosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...